B-1

APPENDIX B

Formula Language Reference

This appendix describes the Working Model 2D formula language.

NOTE: The formula language is a different system from Working
Model Basic (WM Basic). Although they share similar syntax and
numbering schemes, they are used for different purposes. WM Basic is
alanguage system used to control Working Model 2D, while the formula
language is a high-performance, “light-weight”” language used by
Working Model 2D objects during simulations. For more information on
WM Basic, please refer to the accompanying Working Model Basic
User’s Manual.

B.1. About Formulas

Formulas follow standard rules of mathematical syntax, and strongly
resemble the equations used in spreadsheets and programming
languages. Formulas are composed of identifiers, fields, operators, and
Sunctions. The following sections discuss each category in detail.

Formulas can be up to 255 characters in length. Capitalization and
spacing do not affect formulas, although identifiers and function names
must not contain spaces. Parentheses behave as they do in standard
"algebraic manipulations.

B.2. Numeric Conventions

Numbers in Working Model 2D use the standard scientific notation of
spreadsheets such as Lotus 1-2-3 and Excel, and computer languages
such as BASIC, PASCAL and C.

B-2

Appendix B—Formula Language Reference

Exponents

Exponents are displayed in the following way:
In Printed Text In Working Model 2D
123x103 123e3
1.001x10722 1.001e-22

Angle Measures

All angles are expressed in radians. An angle of 360° has a radian
measure of 2.

NOTE: Angles in formulas are expressed in radians although the default
display mode for Working Model 2D is degrees.

B.3. Identifiers

Identifiers are used in formulas to identify an object. There are five types
of identifiers. When creating formulas, you can use one or more of these

types:
body[3]
point[2]
constraint [44]
output[12]
input[5]
The number within the brackets is the object ID. Each object in Working

Model 2D has a unique ID. To find the ID of an object, double-click the
object to display the Properties window for that object. The ID appears

B.4. Fields B-3

Body[]

Point[]

Constraint([]

Output(]

Input[]

with the proper formula syntax in the top of the Properties window. In
addition, the identifier of an object is displayed in the Status bar when the
pointer is over the object (see Chapter 6, “The Workspace”).

For example, body [10] is the ID for body #10.

Bedy [] is the identifier for bodies, such as circles, polygons, and
rectangles.

Point[] is the identifier for point objects. Point objects are either
isolated points, or the points which compose the endpoints of a
constraint. Point([11] is the ID for point#11. (See “Body Fields™ on
page B—6 for polygon vertices.)

Constraint[] is the identifier for constraint objects, including springs,
ropes, joints, and pulleys.

output I 1 is the identifier for all meters.

Input[] is the identifier for all input controls, including sliders, text
boxes, and buttons.

If you use an identifier with an ID for an object that does not exist, the
result will be a “Null” object. Null objects return 0.0 for all of their
properties.

B.4. Fields

Each identifier in the Working Model 2D formula language can have
fields. You use fields to access the values of basic properties such as
position and velocity.

Fields are specified by a “Type”, followed by a period (.) and a field
name. To access the moment of a body with an ID of 3, you would enter

the formula:

body [3] .moment

The value returned from body [3] .moment is a number that can be used
in any formula.

B-4 Appendix B—Formula Language Reference

Any value that has an x, y, and rotational component is returned as type
vector. The vector type has three fields: .x, .y, and .r (rotation).

Fields are a way of accessing smaller components of some bigger object.

Sometimes you will use two fields in a row. To obtain the rotation of a
body, you enter the following formula:

body[2] .p.x

This equation has two hierarchical fields. First, body [2] .p produces the
position field of body #2, which is a vector. Next, the “.x” produces a
rotation value (i.e., the orientation of the body) from the position field.

body [2] body type
body[2].p vector type
body[2].p.r number type

The following is a list of all fields with the type of value that each field
produces. See the following sections for field descriptions.

Type

Type Field Returned

Vector WX number
Y number
B number

Body P Vector
e Vector
e Vector
.mass number
.moement number
.charge numbexr
.staticfric number
.kineticfric number
.elasticity number
.cofm Point
.width number

.height number

B.4. Fields B-5

.radius number
.vertex[n] .x number
.vertex[n].y number
Point .p Vector
.. Vector
.a Vector
.offset Vector
.body Body
.force Vector
Constraint .length number
.dp Vector
.dv Vector
.da Vector
ol Point
.p2 Point
.force Vector
Output X number
.yl number
A2 number
.y3 number
.yd number
Input numbexr
Vector Fields
XVt Notice that position, velocity, and acceleration are always returned as

type “vector” in the above table. For example,
point[4].a acceleration of point #4

body[3].v velocity of mass center of body #3

are both of type vector. You cannot enter these formulas in a text field,
because they are not numbers.

B-6 Appendix B—Formula Language Reference

pv,a

mass, moment, charge,
staticfric, kineticfric, elasticity

cofm

To access individual components of these vectors, you must designate
whether you want the x, y or rotational components.

To get a number, enter the following equation instead:

body[3].v.x x velocity of mass center of body #3

body[3].v.x represents the x velocity of the mass center of body #3,
which is a number, not a vector.

The subfield “.r” returns the rotational component of any vector.

Body Fields

These are the current values of position, velocity and acceleration. Each
of these fields returns a value of type vector. Thus, to use any of these
field you need to add one of the vector fields (x, y,).

body (1] .p.x x position of mass center of body #1
body([3].v.y y velocity of mass center of body #3
body[37] .a.x angular acceleration of body #37

These are thie current values of the various properties.

body[3] .charge charge of body #3

body[14] .mass mass of body #14

This field returns the kinematic properties of the center of mass ot a
body. The expression:

body[3] .cofm

is the same type as points, so it has all the fields available to a point (see
“Point Fields” on page B-7). For example, the expression:

body[3] .cofm.p.x

returns the x coordinate of the center of mass. Similarly:

B.4. Fields B-7

width

height

radius

vertex[n].x, vertex[n].y

pVv,a

body([3] .cofm.v.x

returns the x component of COM’s velocity,

The next four fields (width, height, radius, vertex[n]) are called
geometry-based formula and return the geometric information of bodies.
You can use these fields to position endpoints of constraints precisely
(see “Using Geometry-based Formulas (Point-based Parametrics)” on
page 4-16).

Returns the width of a rectangle or a square. The width field is not valid
for other body types. For squares, width is always identical to height.

Returns the height of a rectangle or a square. The height field is not
valid for other body types. For squares, height is always identical to
width.

Returns the radius of a circle. The radius field is not valid for other
body types.

For a polygon, vertex[n] .x and vertex[n] .y return the x and y
coordinates of the n-th vertex, respectively. The number n (n 2> 1)
corresponds to the vertex ID number shown in the Geometry window for
the polygon. The coordinates are given in terms of the frame of reference
of the polygon (see “Frame of Reference (FOR)” on page 3—10).

For a rectangle and square, the vertex[1] corresponds to the top right
corner (when the body orientation is 0), and the subsequent indexing (2

through 4) returns the other vertices in a counter-clockwise order.

The expression vertex([n] is not valid for a circle.

Point Fields

These are the current values of position, velocity and acceleration. Each
of these fields returns a value of type vector. Thus, to use any of these
tields you need to add one of the vector fields (x, y, r).

point[1l].p.x x position of point #1

The position of a point is given in terms of the global coordinates.

B-8

Appendix B—Formula Language Reference

offset

body

force

length

dp, dv, da

The offset field returns the vector containing the current configuration
(.x, .y, and .x) of the point element in terms of the FOR (frame of
reference) of the body to which the point is attached (local coordinates).

If the point element is attached to the background, the offset field is
equivalent to the .p field of the point element. That is:

point(n)].p.x = point[n].offset.x

and similarly for the .y and .r fields.

The bedy field returns the body to which the point element is attached.
See “Body Fields” on page B—6 for associated fields.

The force field returns a vector representing the force acting on the
point—to be more precise, the force acting on the body at the point. The
components are given in terms of the global coordinates, regardless of
what the point element is attached to.

Constraint Fields

This is the current distance between the two points of the constraint. To
find the current length of a spring, you would enter:

constraint[3].length length of constraint #3

These are the current values for the difference in position, velocity, and
acceleration between the two points of the constraint. Each of these
fields returns a value of type vector.

These values measure in the constraint's reference frame. The x value is

measured along the line connecting the two points of a point to point
constraint.

To find out how fast the length of a spring is changing (the difference in
velocity between the two endpoints of the spring), you enter the
following formula:

constraint[3].dv.x

B.5. Operators B-9

p1, p2

force

y1,y2, y3, y4

Each of these fields returns point that serves as an endpoint of the
constraint. The p1 field returns the point element that was first created.
See “Point Fields” on page B—7 for associated fields.

The force field returns the vector representing the constraint force. The
field is equivalent to constraintforce (n) (see “Simulation Functions”
on page B-21).

Output Fields

This is the value displayed on the x-axis or the abscissa of an output
graph.

output (6] .x value displayed on x axis of output 6

These are the values displayed on the y axis of an output graph.

output[6] .yl value displayed on y1 axis of output 6
output [6].y2 value displayed on y2 axis of output 6
output[6].y3 value displayed on y3 axis of output 6
output[6].v4 value displayed on y4 axis of output 6

B.5. Operators

Operators include all of the common algebraic symbols (+, -, >, =). The
following operators require one or two numbers. The letters “a” and “b”
are used.as place holders for any number or formula that evaluates to a
number.

Numeric Operators

The following is a listing of numeric operators that are available for use
in formula entry:

B-10 Appendix B—Formula Language Reference

Operator Input(s) Output
- (negate) a -a

+ (plus) a+b a+b
- (minus) a-b a-b
* (multiply) a*b axb
/ (divide) a/b a/ b
% (mod) as%hb a mod b
~ (power) a®hb aP

> a>Dhb lor O
< a <b lor 0
= a >=b 1l or 0
<= a <=b lor 0
= (equal) a=>5, 1o 0
<>(not equal) a <>b 1 or 9

These operators require numbers as their inputs. This means that you
cannot add most formula elements that are not a number.

Incorrect:
body[3] + point[3] cannot add a body to a
point
body (3] .p - 34.5 cannot subtract a
number from a vector
point(7].v + body[3] cannot add a vector to a
body
body[3].p > 44.0 cannot compare a
vector to a number
Correct:

body[3].p.x + point[3].p.x
body[3].p.x - 34.5
point([7].v.y - body[3].v.vy

body[3].p.y > 44.0

B.5. Operators B-11

- (negate)
+ (plus)

- (minus)
* (multiply)
/ (divide)

% (mod)

* (power)

> (greater than)

< (less than)

>= (greater than or equal to)

<= (less than or equal to)

= (equal)

body[3].p.y = 44.0

body[3].p.y != 44.0
Takes a single number and returns the negative of the number.
Takes two numbers and returns the sum.
Takes two numbers and returns the difference.
Takes two numbers and returns the product.
Takes two numbers and returns the quotient.

Takes two numbers and returns the remainder of the first value divided
by the second.

Takes two numbers and returns the first value raised to the power of the
second value.

Takes two numbers and returns the value 1 if the first value is greater
than the second value. Otherwise, returns the value 0.

Takes two numbers and returns the value 1 if the first value is less than
the second value. Otherwise, returns the value 0.

Takes two numbers and returns the value 1 if the first value is greater
than or equal to the second value. Otherwise, returns the value 0.

Takes two numbers and returns the value 1 if the first value is less than
or equal to the second value. Otherwise, returns the value 0.

Takes two numbers and returns the value 1 if the two values are equal.
Otherwise, returns the value 0. This operator does not assign any value
to the left side of the equation. The formula:

body (3] .p.y = 3

B-12 Appendix B—Formula Language Reference

<> (not equal)

Arithmetic Operators

returns 1 if body #3's y position equals 3.0. This formula does not set any
values of body #3's position.

Takes two numbers and returns the value 1 if the two values are not
equal. Otherwise, returns the value 0.

Operator Precedence

Use parentheses to set the order of equation evaluation. All equations are
normally evaluated from left to right. Precedence is given to operators
in the following order. (operators listed in the same row have equal
precedence):

0 [l . highest precedence
ot 5 %o

4. -3 (binary operators)

< <= > 5:

= lowest precedence

Operators with the highest precedence are applied first. For example, the
following formula:

3+2*4

is evaluated as 3+(2%4) instead of as (3+2)*4. This is because the
multiplication (*) operator has a higher precedence than the addition (+)
operator.

Use parentheses to change the order of evaluation, or to assure yourself

of the order of evaluation if you're not quite sure of the precedence of

various operators. In the above example, you could enter the formula as
(3 +2) * 4

to force evaluation of the addition before the multiplication.

You can nest parentheses, as in the formula

B.5. Operators B-13

Note on Inequalities

((3 + 23 %4 + 10). / 2

Be sure to use parentheses, and not brackets ([]) or braces ({}).

Although the inequality operators have the same precedences, the return
value of the formula:

if (0 <t <=1, 50; 100)

is actually equivalent to:

if ((0 < t) <=1, 50, 100)

since the chain of the binary operators is evaluated from left to right. As
a result, the above formula always returns 50 regardless of the value t
(since (0 < f) returns 1 or 0, the entire first argument is always 1, or true).
If you want the effect of “return 50 when t is between O and 1, or else
return 1007, you should type:

if(and(0 < t, t =='1); 5@, 100).

Please refer to “List of Functions” on page B—16 for detailed discussions
on each function.

Vector Operators

The following operators will work on vectors.
Operator Input(s) Output
- (negate) vector vector
+ (plus) vector, vector vector
- (minus) vector, vector vector
* (multiply) number , vector vector
| | (magnitude) vector numbexr

These operators require that their input types match those listed in the
previous chart. Vector operators are useful for simplifying formulas. To
display a meter showing the distance between two bodies, you would

enter the following formula:

|body(3].p - body(2].p|

B-14 Appendix B—Formula Language Reference

This formula contains two vector operators. First, the

TRl

operator was

used to subtract the two positions of the bodies:

body[3].p - body[2].p

result is a vector

The chart above indicates that the minus (-) operator can be used on two
vectors, and that the result is a vector. The result can then be used with
the magnitude(ll) operator to produce a number. The following table
shows some of possibly common mistakes and corrections.

Incorrect Correct

body[2].1al Ibody[2].al

Ibody[2]l.a Ibody[2].al

Ibody[2].a.xI abs(body[2].a.x)

bedy[2].a.x + body[2].v Unify both operands to vectors or
numbers.

- (negate) Takes a vector quantity and returns the negative of the quantity. The .x,
.y, and .r fields of the vector are all negated.

body (3] .p.x

~body[3] .p.X

(-body (3] .p) .%

value is 10.0

value is -10.0

value is -10.0

In the last case, the value of body[3].p is negated as a complete vector.

+ (plus) Takes two vectors and returns a vector which is the sum. The vector
which is returned will have each of its fields (.x, .y. .r) equal to the sum
of the corespondent fields of the two vectors being added.

- (minus) Takes two vectors and returns a vector which is the difference. The
vector which is returned will have each of its fields (.x, .y, .r) equal to the
difference of the corespondent fields of the two vectors being added.

B.6. Functions B-15

* (multiply)

Il (magnitude)

Takes a vector and a number and returns the scalar product. The vector
which is returned will have each of its fields

(-x, .y, .r) equal to the product of the number and the corresponding field
of the multiplied vector.

Takes a vector and returns a number which is the magnitude of the .x and
.y fields. Magnitude is equal to the length of a line drawn from (0,0) to
the (.x, .y) fields of the vector. The number returned from the magnitude
function is equal to:

|v] = sgrt(v.x*v.x + v.y*v.y)

B.6. Functions

Functions take from zero to three arguments, and return a number or
vector value. All functions accept their arguments in the form

tinction(argl, arg2.....)
There are two kinds of functions available. Math functions perform

standard mathematical operations. Simulation functions return
information from Working Model 2D simulations.

B-16 Appendix B—Formula Language Reference

List of Functions
Name Inputs Ooutput
abs number number
and number , number lor O
angle vector number
acos number number
asin number number
atan number number
atan2 number , number numbexr
ceil number numbexr
cos number number
exp number number
floor number number
if number , number , number number
1n number number
log number 1 number
mag vector number
max number , number number
min number , number numbexr
mod number , number number
not number lox 0
or number , number 1.8 0
pi b
pow number , number numbexr
rand number
sign number 1l or -1
sin number number
sqgr number number
vector number
sgrt number number
tan number number
vector number , number vector
abs(x) Takes a number and returns the absolute value of the number. Example:

abs (body[3] .p.x%)

returns the absolute value of body #3's x position.

B.6. Functions B-17

and(x,y)

angle(v)

acos(x)

asin(x)

atan(x)

atan2(y,x)

ceil(x)

cos(x)

exp(x)

floor(x)

Logical AND operation. Takes two numbers and returns the value 1 if
both numbers are not 0. Otherwise, returns the value 0. Example:

and(time>1 , body([2].v.y>10)

returns the value 1 if time is greater than 1 and body #2's y velocity is
greater than 10.

Takes a vector and returns the angle the vector makes with the coordinate
plane. For example, if a body has a velocity of 0 in the x direction, and
10 in the y direction, the body has a velocity that is in the direction of 90°
or 1/2 on the coordinate plane. The formula

angle(body[3] .v)

would return the value of /2.

Takes a number and returns the inverse cosine of the number. Values are
returned in the range [0,7].

Takes a number and returns the inverse sine of the number. Values are
returned in the range [-7/2, /2],

Takes a number and returns the inverse tangent of the number. Values
are returned in the range [-n/2, 7t/2].

Takes two numbers and returns the inverse tangent of y/x. This function
is useful because unlike the atan function, it can generate an angle in the
correct quadrant. Values are returned in the range [-xt, 7t].

Takes a number and returns the smallest integer no smaller than the
number.

Takes a number and returns the cosine of the number.

Takes a number and returns the exponential of the number. (e raised to
the value of the number).

Takes a number and returns the largest integer no larger than the number.

B-18 Appendix B—Formula Language Reference
if(x,y,z) Takes three numbers. If the value of the first number (x) is not equal to
0, then returns the value of the second number (y). Otherwise, returns
the value of the third number (z). Example:
if(time>1, 20, 0)
returns the value 20 if time is greater than 1, otherwise returns the value
0.
Typically, the first argument of an if function is a relation (such as x =
v) or a logical operation (such as and(a, k)). You can write nested if-
statements by recursively using other if () functions as its own
arguments.
For example, shown below is a somewhat naive C-code segment which
returns the maximum of three numbers a, b, and c:
(
¥ (a5 b)) {
i (o>)
return a
else
return ¢ ;
}
else (
FE; b E)
return b ;
else
return ¢ ;
}
}
In the formula language of Working Model 2D, the above segment can
be translated into a single line as follows:
if(a>b,if(a>c,a,c),if(b>c,b,c))
In(x) Takes a number and returns the natural logarithm of the number.,
log(x) Takes a number and returns the base 10 logarithm of the number.
mag(v) Takes a vector and returns the magnitude of the vector. Result is the

same as |vl.

B.6. Functions B-19

max(x,y)

min(x,y)

mod(x,y)

not(x)

or(x,y)

pow(x,y)

pi()

Takes two numbers and returns the larger of the two numbers. Example:
max(body[1l].a.x , bedy[2].a.x)
returns the larger x acceleration of either body #1 or body #2.

If you wish to find the maximum of three numbers a, b, and ¢, you
could recursively use the max () functions as follows:

max (max(a,b) ,c)

Takes two numbers and returns the smaller of the two. Example:
min(body(1l].v.x , body[2].v.x)
returns the smaller x velocity of either body #1 or body #2.

Asin the max () function, you could find the minimum of three numbers
a, b, and c as:

min(min(a,b),c)

Takes two numbers and returns the remainder when the first value is
divided by the second.

Logical NOT operation. Takes a number and returns the value 0 if the
number is not 0. Otherwise, returns the value 1.

Logical OR operation. Takes two numbers and returns the value 1 if at
least one of the numbers is not 0. Returns 0 if and only if both numbers
are 0. Example:

or (time>1 , body([2].v.r>10)

returns the value 1 if time is greater than 1 or body #2's angular velocity
is greater than 10.

Takes two numbers and returns the value of x raised to the power of y;
i.e., returns x”.

Returns the value of .

B-20

Appendix B—Formula Language Reference

rand()

sign(x)

sin(x)

sqr(x)

sqgri(x)
tan{x)

vector(x,y)

Returns a random value between 0 and 1.
&

Takes a number and returns the value 1 if the number is greater than or
equal to zero. Otherwise, returns the value -1.

Takes a number and returns the sine of the number.

Takes a number or a vector. If the input is a number, returns the square
(x * x) of the number. If the input is a vector, returns the sum of the .x
field squared and the .y field squared.

Takes a number and returns the square root of the number.
Takes a number and returns the tangent of the number.

Takes two numbers and returns a vector composed of the two numbers.
The first number (x) becomes the .x field of the vector. The second
number becomes the .y field of the vector.

B.6. Functions B-21

constraintforce(x)

constraintforce(x,y)

Simulation Functions

Simulation functions are used to extract data from the simulation. These
functions are used in the various meters and vectors of Working Model
2D.

Name Inputs Output
constraintforce number vector
number , number vector

number, number , number vector

frame number
frictionforce number, number vector
groupcofm number vector
kinetic number
length number , number number
normalforce number , number vector
section number, vector number

Takes the ID number of a constraint (x), and returns a vector describing
the current force being applied by the constraint. To find the
compression in a spring, use the formula:

constraintforce(3) .x

In point to point constraints, the .x component of the force vector is
always measured along the line connecting the two endpoints. In
constraints that apply a torque, the .r component of the constraint force
contains the value of applied torque.

For pin joints, the x and y components are given in terms of the global
coordinate axes.

Takes the ID number of a constraint (x), and the ID number of a body (y).
Returns the amount of force being applied by the constraint on the body
as a vector. This function is used by meters which measure gravity, air
resistance, electrostatic and custom force fields. The ID numbers for

these four constraints are constant, and are described in the next section.

B-22 Appendix B—Formula Language Reference

constraintforce(x,y,z)

frame()

frictionforce(x,y)

groupcofm(x)

kinetic()

length(x,y)

The gravity constraint always uses constraint ID #10002. To measure
the force imposed on a body by the linear gravity constraint, use the
formula

constraintforce (10002, 3).y

In this case, the .y suffix is used to get the value of force in the y (up and
down) direction.

Takes the ID number of a constraint (x), and the ID numbers of two
bodies (y and 7). Returns the amount of force being applied by the
constraint between the two bodies.

This function only returns values for forces which are applied to each
pair of bodies (planetary gravity, electrostatics, and custom force fields).
The ID numbers for these constraints are constant, and are described in
the next section. The gravity constraint always uses constraint ID
#10002. To measure the force of gravity between two specific bodies in
a planetary system, use the formula

constraintforce(10002,3,5) .x

As with point to point constraints, the .x value of the vector measures the
force applied along the line that connects the center of mass of the two
bodies.

Returns the current frame number. The initial conditions are defined as
being frame zero.

Takes the ID numbers of two bodies (x and y) and returns the friction
force of the first object acting upon the second. The value is returned as
a vector.

Takes the ID number of a group (x) and returns the center of mass of all
bodies in the group. Currently, the only defined group is group #0, which
is the group that contains all bodies.

Returns the total kinetic energy of all bodies in the simulation as a
number.

Takes the ID numbers of two bodies (x and y) and returns the length of
the line connecting their centers of mass.

B.7. Predefined Values B-23

normalforce(x,y)

section(x,v)

time ort

self

Takes the ID numbers of two bodies (x and y) and returns the contact
force of the first object acting upon the second. The value is returned as
a vector.

Working Model 2D considers the contact force as the sum of the normal
force and the collision force. Please see “A.7. Simulating Collisions”’
for more information.

Takes the ID number of a body (x) and a vector quantity (y). Returns the
cross sectional width of the body in the direction of the vector. For
example, section (body[1], vector(1,0)) will return the vertical
cross section width of body [1]. This function is used by the air
resistance force field to approximate the drag on bodies.

B.7. Predefined Values

Variables

There are several predefined variables that you can use in formulas.

Name Type
time or t number
self mass
other mass
ground mass

Returns the current time in the simulation. Time always begins at 0.0 in
frame #0.

Returns a body type when placed inside a force field equation. When
force field equations are evaluated for each body in the simulation, “self”
assumes the value of the current body on which the force field is being
applied. For example, the equation for a linear gravitational field is

Fy: - self.mass * 92.81

A force is applied to each body in the simulation. The value of “self”
assumes the value of the specific body onto which force is being applied.
Thus, in this case each body has a force applied equal to -9.81 times its
Oown mass.

B-24

Appendix B—Formula Language Reference

other

ground

When force fields are evaluated for each pair of bodies (pair-wise fields),
the value of “self”” assumes the body of the first body in each pair.

Returns a body type when placed inside a force field equation. When
force field equations are evaluated for each pair of bodies in the
simulation (pair-wise fields), “other” assumes the value of the second
body of each pair.

For example, the force field equation for planetary gravity is

-self.mass * 6.67e-11 / sgr(self.p -
other.p) * other.mass

Gmym,

2
r

or more commonly:

This equation is applied to each pair of bodies in the simulation. As the
equation is applied to each pair of bodies, “self”” assumes the value of the
first body and “other” assumes the value of the second in the pair.

Returns a body type for the background. This is essentially a body at
location 0,0 that never moves.

Constants

Four ID numbers are reserved for the global force fields of gravity,
electrostatics, air resistance, and the custom force field. You will see
these ID numbers in the formulas used in meters to measure forces
produced by these constraints. These ID numbers are as follows:

Force Field Reserved ID
gravity 10002
electrostatics 10004
air resistance 10006
custom force field 10008

If you create a meter to measure the force of gravity on a body, you will
see a formula such as

constraintforce (10002, 3).y

B.7. Predefined Values B-25

This formula gives the y component of the force applied by constraint
#10002 on body #3. The value 10002 is automatically inserted in the
formula for this meter as the constraint ID for the gravity force.

